
ABSTRACT: Classification is an important component of food
quality assurance, as methods to guarantee authenticity of food
products are widely demanded by food producers, processors,
consumers, and regulatory bodies. The objective of this work
was to develop a rapid classification method in order to discrim-
inate virgin olive oil, olive oil, and “orujo” olive oil, the prices
of which differ dramatically in the market on account of the high
quality level of the former. For these purposes, new ChemSensor
equipment that combines a headspace autosampler with a mass-
selective detector and Pirouette data evaluation software was
used. To take into account the large number of samples analyzed
(50 samples repeated 10 times), as well as the wide interval of
m/z ratios scanned (41–170), chemometric approaches were
necessary. Cluster analysis, principal component analysis, 
K-nearest neighbors, and soft independent modeling of class
analogy (SIMCA) were applied to model the different oil classes.
The results indicated good classification and prediction abilities,
with SIMCA affording the best results (viz. 97% specificity).
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Olive oil, and in particular virgin olive oil, is one of the basic
components of the Mediterranean diet (1) and is classified into
three main groups, namely, virgin olive oil, olive oil, and
“orujo” olive oil. Virgin olive oil is extracted by purely me-
chanical means from sound, ripe fruits of the olive tree (Olea
europaea L.). Olive oil is obtained by mixing refined olive oil
and a variable amount of virgin olive oil (ca. 10–60%). Orujo
is the residue remaining after virgin olive oil extraction with
solvents. Orujo oil (pomace oil) is further processed to form
refined orujo oil; by mixing the latter with small amounts of
virgin olive oil (ca. 5–10%), orujo olive oil is produced, the
third and lowest-quality type of olive oil.

Flavors and aroma of the oils are generated by a number
of volatile constituents that are present at extremely low con-
centrations (2). Different isolation methods have been re-
ported prior to the chromatographic separation/determination
of volatile compounds, namely, direct injection, static and dy-
namic headspace, high-vacuum distillation, on-line LC–GC
(3), and supercritical fluid extraction (4). The most recent
methods have employed an electronic nose, a system that
mimics human olfaction by combining the response of a set

of chemical sensors, with partial specificity for the measure-
ment of volatiles, and pattern recognition techniques for data
interpretation (5–11). Various types of sensors, such as metal
oxide semiconductors (5,7,11) and conducting polymers
(6,8,10), have been used. The set of sensors of an electronic
nose affords a large amount of information, and the process-
ing of the data generated by the system is an essential part of
the concept of electronic olfactometry.

Direct sampling-mass spectrometry (DS-MS) techniques
are also related to the analysis of volatile compounds; they refer
to the introduction of the analytes from a sample directly into a
mass spectrometer using a simple interface with minimal sam-
ple preparation and no prior chromatographic separation (12).
Thus, apart from avoiding typical problems in the employment
of electronic noses—high sensitivity to some compounds, such
as ethanol or water, and high cost of energy—DS-MS tech-
niques possess several advantages, such as simplicity, real-time
response, and high sample throughput. These techniques also
provide a chemical fingerprint of the sample, which character-
izes it and distinguishes it from other samples.

Chemometric techniques can also be used to process the
data generated by the system; thus, multivariate calibration
models, such as partial least squares (PLS) regression, tri-
PLS, and parallel factor analysis (13), are useful for the analy-
sis of sample mixtures containing analytes with similar mass
spectra. Vegetable oil classification has been carried out by
dynamic headspace GC using ANOVA (14), by 13C NMR
using PLS and principal component analysis (PCA) (15), or
K-nearest neighbors (KNN), soft independent modeling of
class analogy (SIMCA), and linear discriminant analysis (11).

Recently, Agilent Technologies (Palo Alto, CA) commer-
cialized a new instrument, the ChemSensor 4440, which con-
sists of a headspace autosampler with a mass spectrometer for
screening purposes. Few applications of this instrument have
been developed to date; the basic operating principles and
fields of use of the ChemSensor 4440 have been evaluated,
and examples of the possibilities of use of the instrument in
process and quality control in the pharmaceutical, food, and
cosmetic industries have been given (16,17). Recently, this
technology was successfully applied to the detection of adul-
terants in olive oil (18). In the present work, a novel applica-
tion of this instrument is proposed in order to classify three
different edible olive oils, namely, virgin olive oil, olive oil,
and orujo olive oil. Edible oils were automatically carried
from the autosampler to the heating unit and 3 mL of the
headspace generated was transferred by a helium carrier
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stream into the mass spectrometer. Taking into account the
wide m/z range selected (41–170) and the numerous samples
analyzed (500), chemometric treatment was necessary. Thus,
four pattern recognition techniques [cluster analysis (CA),
PCA, KNN, and SIMCA] included in the Pirouette data eval-
uation software of the instrument provided by Infometrix Inc.
(Woodinville, WA) were applied.

EXPERIMENTAL PROCEDURES

Apparatus. Oil analyses were performed with a ChemSensor
4440B (Agilent Technologies) system, which comprises two
modules. The first one is a 44-space autosampler for head-
space vials that includes a robotic arm and a headspace gener-
ation unit with two parts: an oven to heat the samples inside
the vials and form the headspace, and a six-port injection valve
with a 3-mL loop. Helium (5.0 grade purity, Air Liquide,
Seville, Spain), regulated by a digital pressure and flow con-
troller, was used for both pressurizing the vial (18.0 psi of flow
pressure) and carrying the headspace formed to the detector
(2.0 psi of flow pressure). Every tubing of this unit, together
with a transfer line connected to the heated interface of the de-
tector, is passivated with Silicosteel. The second module is a
quadrupole 5973 mass spectrometer detector, operated in full
scan mode with a mass range between m/z 41 and 170. EI ion-
ization was used with an ionization energy of 70 eV. The trans-
fer line, source, and quadrupole temperatures were maintained
at 120, 200, and 120°C, respectively. Total ion current chro-
matograms were acquired and processed using G1701BA
Standalone data analysis software (Infometrix) on a Pentium
II computer that also controlled the whole system.

Ten-milliliter glass flat-bottomed vials for headspace
analysis with 20-mm polytetrafluoroethylene/silicone septa
(Supelco, Madrid, Spain) were also employed.

Oil samples. Twenty-nine samples of virgin olive oil
(VOO), 16 samples of olive oil (OO), and 5 samples of orujo
olive oil (OOO) were obtained from different local markets
in Spain. All samples were from Andalusian cultivars (south
of Spain) and corresponded to Picual and Hojiblanca ripe fruit
varieties. Ten aliquots of each sample were analyzed, so 500
analyses were performed; a small number of aliquots showed
poor reproducibility. In order to prevent volatile losses or con-
tamination of the volatile fraction, all samples were stored in
a cold, dark place.

Procedure. Aliquots of 5.0 mL of each oil sample were
added to the 10-mL headspace vials and placed into the au-
tosampler. The robotic arm took each vial from the 44-space
carousel and placed it into the oven; the sample was then
heated at 90ºC for 30 min in order to enrich and equilibrate
the gaseous phase in the volatile compounds of the oil sam-
ple. Afterward (Fig. 1A), a needle connected to the injection
valve (IV) entered the vial and a helium line pressurized the
headspace for 12 s; then, by opening a vent valve, and due to
the different pressure inside the vial and at the end of the tub-
ing (atmospheric pressure), volatile compounds were driven
out of the vial via the needle, filling the 3-mL loop of the IV,

previously heated at 110ºC, and being released to the atmos-
phere during 3 s. In a second step (Fig. 1B), the IV was
switched and the helium stream transported the loop contents
to the mass spectrometer.

In this scheme, there is no chromatographic separation, so
the volatiles arrive at the detector at the same time, providing
a total ion current chromatogram, which can be considered a
chemical fingerprint of the oil sample, called a volatiles pro-
file, and which can be used for classification purposes.

Chemometric procedures. The data set consisted of a 500 ×
130 data matrix in which the rows corresponded to the differ-
ent oil samples (290 of virgin olive oil, 160 of olive oil, and
50 of orujo olive oil) and the columns to the 130 masses
scanned by the MS detector, from m/z 41 to 170. Signals ob-
tained from the detector were treated first by two unsupervised
techniques (CA and PCA), in order to find internal structures
or clustering of data, and later by two supervised techniques
(KNN and SIMCA), in order to obtain adequate classification
procedures, all of which are explained below. For unsuper-
vised procedures, a 95% confidence level was fixed.

All chemometric analyses were performed by means of the
statistical software package “Pirouette: Multivariate Data
Analysis,” developed by Infometrix Inc.

RESULTS AND DISCUSSION

CA. CA is a complementary technique to describe the struc-
ture of a data table and search for natural groupings among the
samples, commonly applied before other multivariate proce-
dures owing to its unsupervised nature. In this work, similari-
ties between the samples were calculated on the basis of the
Euclidean distance, while a hierarchical agglomerative proce-
dure with complete linkage was used to establish clusters. The
proximity between two sample responses (viz., j and j′, max)
can be represented by plotting either the multivariate distance
d or using a similarity index (S) to normalize (19), where:

[1]

The similarity index lies between 0 and 1, taking a value of zero
for the most different sample responses and a value of unity for

S
d

d
jj= − ′

1
max
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FIG. 1. Diagram of pressurizing/venting (A) and injection (B) positions
of the headspace generation unit.



identical sample responses. CA was applied to the raw data,
but neither preprocessing techniques nor transformations im-
proved the results. As can be seen in Figure 2, at an S of 0.73,
seven clusters (A–G) were established, but almost all of them
overlapped with adjacent clusters; no clear separation was evi-
dent to help in the classification. Due to the large number of
samples analyzed (500 samples), and the larger number of sam-
ples of one type (290 VOO) than of the other two types (160
OO and 50 OOO), there is a certain overlap between the three
classes studied. Only two clusters are composed of samples be-
longing just to the VOO class, the most abundant kind of oil
(clusters C and D). On the other hand, of the samples in cluster
A, 31.7% are VOO, 55.2% are OO, and 13.1% are OOO sam-
ples, whereas in cluster B, 52.9% are VOO and 47.1% are OO
samples. As indicated before, clusters C and D are 100% com-
posed of VOO samples, and clusters E to G, containing 7, 4,
and 1 samples, respectively, are composed of misgrouped sam-
ples. Such an irregular clustering can be explained on the basis
of the larger number of VOO samples analyzed in comparison
with the OOO samples. Therefore, no clear separation is
achieved employing clustering techniques.

PCA. PCA is used to reduce the dimensionality of the data
matrix, retaining the maximal amount possible of variability
present in the original data. Essentially, the original m vari-
ables—in our case, m/z ratios from the MS detector—are lin-
early combined to form F new variables called factors or prin-
cipal components (19). PCA represents the original data
matrix (Xn×m), where n corresponds to the number of samples
and m to the number of raw variables (from m/z 41 to 170),
respectively, as a product of two matrices: the scores matrix
(Sn×F) and the loadings matrix (LF×m), plus a table of residu-
als (En×m). This corresponds to projecting the X matrix down
on a few-dimensional (F) space. When the number of factors
is small compared with m, PCA provides a considerable sim-
plification and reduction of the data matrix. The scores are
the values of the samples represented in the new F-dimen-
sional space, and the loadings are the coefficients of the com-

bined m original variables. PCA was performed on the mean-
centered data: from the loadings of the original variables in
the three first principal components, m/z ratio 44 is the domi-
nant variable in the first principal component, which repre-
sents 97.6% of the total variability; m/z ratios 43 and 58 dom-
inate the second principal component, which represents 2.1%,
and m/z ratios 45 and 46 dominate the third principal compo-
nent, which represents 0.2%. As can be seen in Figure 3,
where the scores of each oil sample are examined in a 3-D
plot of the first three principal components, discrimination be-
tween VOO and OO samples is not clear; however, there is a
correct classification among OOO samples, which are per-
fectly grouped. The OO samples are distributed in five sub-
groups as a consequence of the different percentage of VOO
they contain (between 10 and 60%). The two subgroups
closer to the OOO samples consisted of those samples with
the lowest percentage of VOO; their volatile profiles were
more nearly similar to the OOO samples, for which the per-
centage of VOO is ca. 7%. In addition, an irregular and dis-
persed distribution of VOO samples was obtained, which can
be attributed to the large number of samples analyzed (29 out
of 50 samples) because of the higher availability of that sam-
ple in the studied region. These samples are directly ex-
tracted, by purely mechanical means, from the olives, and
their volatile fractions vary with both the variety of olives
(viz., Hojiblanca, Aloreña, Picual, Arbequina, etc.) and the
acidity (viz., 1–3º), among other characteristics.

The study of the latent structures residing in the data set,
obtained after the application of the two unsupervised proce-
dures (CA and PCA), revealed great similarities among the
volatiles composition of the three types of oil samples studied,
especially between VOO and OO, and the difficulty of classi-
fying them on the basis of only their volatiles profiles. There
is clear evidence of the different characteristics of OOO sam-
ples that permits their discrimination from other samples em-
ploying PCA. A larger amount of OOO samples should be
studied in order to confirm these results, but in the geographi-
cal region studied, few manufacturers produce this kind of oil.

KNN. KNN is a discriminant, nonparametric technique
(11), based on the distance between objects in a space of di-
mension equal to the number of variables explored. The class
to which the sample is assigned is that of the samples of the
training set that are closest to it. Only the K closest objects
are used to make the assignment. From a mathematical point
of view, it is a simple method, free from statistical assump-
tions. The distance criterion used in the present work was Eu-
clidean distance. Initially, a classification model was con-
structed in which all samples were used as the training set. In
a second stage, to validate the classification model thus ob-
tained and its stability in predicting, a cross-validation step
was performed with five cancellation groups (the samples
were randomly divided into five groups, each of them con-
taining 20% of the total), four of which were used as the train-
ing set and the fifth as the prediction set. To perform this
cross-validation procedure, the same process was repeated
five times with the five different training and prediction sets,
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FIG. 2. Dendrogram of cluster analysis. S, similarity index.



ensuring that all the samples were included at least once in
the prediction set. The success of this classification system
was expressed as classification ability (percentage of mem-
bers of the training set correctly classified) and prediction
ability (percentage of the test set members adequately classi-
fied by using the rules developed in the training step). The
term “specificity” refers to the percentage of samples that, be-
longing to a different class, are recognized as being foreign to
the model; the specificity for each category was related to the
other two classes, so that specificity for VOO samples was
evaluated in relation with OO or with OOO classes. KNN was

applied, with raw and normalized data (raw data divided by
their maximum value), for the classification of VOO, OO, and
OOO samples. The value of K was selected by optimization,
determining the classification ability and the number of mis-
classifications, with K values between 1 and 10; the best re-
sults were achieved using K = 1 (fewer number of misclassi-
fications obtained). Therefore, K = 1 was selected for the
application of KNN. Under these conditions, the results for
both raw and normalized data were as summarized in Table 1.
According to these data, good classification and prediction
percentages were obtained, indicating that the mathematical
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FIG. 3. Plot of oil sample scores for principal component analysis model. Virgin olive oil (VOO, in red), olive oil
(OO, in green), and orujo olive oil (OOO, in pink).

TABLE 1
Percentages of Classification and Prediction Abilities for KNN and SIMCA

KNNa SIMCAa

Raw data Normalized data Raw data Normalized data

1 2 1 2 1 2 1 2

Classification VOO 92.8 93.1 95.8 96.2 96.7 62.4 96.3 74.5
OO 87.8 90.0 90.2 90.0 99.8 68.1 98.5 57.0
OOO 70.0 70.0 84.2 90.0 100.0 100.0 100.0 60.0

Prediction VOO 90.7 94.8 94.1 91.7
OO 91.9 92.5 92.5 93.1
OOO 63.3 93.3 63.3 60.0

a1 corresponds to cross-validation with five cancellation groups; 2 corresponds to correct classification with all samples in
the training set. KNN, K-nearest neighbors; SIMCA, soft independent modeling of class analogy; VOO, virgin olive oil; OO,
olive oil; OOO, orujo olive oil.



models generated can correctly classify and discriminate
among the different types of oil samples. Classification abil-
ity did not change significantly when the training set was
composed of only 80% of the samples (column 1, in Table 1)
versus 100% of them (column 2, in Table 1), except for OOO
samples with normalized data. However, normalization of the
data improved the overall classification ability for the OOO
class owing to the smaller number of samples available. Sim-
ilar values were obtained for classification and prediction
abilities, indicating that the model is fairly stable. In consid-
ering those results, KNN provides an adequate model to clas-
sify the different types of olive oil on the basis of their

volatiles profiles. Specificity for KNN was studied using 80%
of the samples as a training set (cross-validation). The results
are listed in Table 2, where raw and normalized data are also
compared. In general, good percentages for every studied
class were obtained; the poorest results were achieved for the
OO class (73.3 or 85.0%) in relation to OOO. Normalization
of data did not help in the classification task, as it provided
similar results as the raw data. 

According to the results listed in Tables 1 and 2, the pro-
posed KNN model provides classification and prediction abil-
ities that make it adequate for the proposed task of recogniz-
ing the different types of oil samples.

SIMCA. The last supervised pattern recognition technique
applied to the data is the most complicated as it is based on
the principal components of each category and critical dis-
tances with probabilistic significance (19). It is a class-mod-
eling technique that builds frontiers between each class and
the rest of the universe; with this technique the classification
rule for a given class is a class-box that envelops the position
of the class in a pattern space, so that an object is assigned to
a class if it is situated inside the boundaries of only one class-
box and considered to be an outlier for that class if it falls out-
side the class-box (11). SIMCA constructs an independent
model for each class by PCA; the number of principal com-
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TABLE 2
Specificity for Each Type of Olive Oil Using KNN and SIMCAa

VOO OO OOO

Specificity KNN SIMCA KNN SIMCA KNN SIMCA

Raw data VOO 91.9 99.8 96.7 100.0
OO 93.4 98.4 73.3 100.0
OOO 99.5 100.0 96.5 100.0

Normalized VOO 93.8 99.4 95.0 100.0
data OO 95.6 97.4 85.0 100.0

OOO 99.0 100.0 94.2 100.0
aSee Table 1 for abbreviations.

FIG. 4. Coomans plot, for soft independent modeling of class analogy, of oil samples. For abbreviations and key see Figure 3.



ponents used for each class may be preset or may be selected
in such a way that they explain a given percentage of the vari-
ance of the data. In this way, a closed space is constructed on
the basis of a critical distance. Each object considered is as-
signed to one category according to its Euclidean distance
from the model. The same concept of specificity, defined
above, can be associated with this chemometric treatment.
Apart from a correct classification using all samples as the
training set, a cross-validation procedure in five steps, as de-
scribed for KNN, was used. Again, models were obtained for
both raw and normalized data. In both cases, the model cre-
ated afforded 12 components for the two first categories
(VOO and OO) and nine components for the third category
(OOO), so that a great reduction in the number of variables
was made with almost no loss of information. The results
were studied in terms of classification and prediction abilities
and are summarized in Table 1. The classification model de-
veloped by SIMCA in the validation step produced good re-
sults for classification abilities (percentages higher than 96%
both for raw and normalized data). Poor results were achieved
for correct classification except for raw data of OOO samples
(100%); for prediction abilities, similar results were obtained,
although OOO samples again provided the poorest percent-
ages. In addition, a Coomans plot was used (Fig. 4) to evalu-
ate the category classification of oil samples; the axes of the
plot represent the distances of the samples from the models to
the OO and OOO classes, respectively. The majority of VOO
samples were obviously considered outliers, but there were
some that were included in the OO region; this overlap was
already discussed in relation to the CA and PCA models. OO
and OOO samples were located in their own region, and some
OOO samples appearing in the region related to both classes.
Specificity results for SIMCA are listed in Table 2; better re-
sults were obtained than with KNN (more than 97% speci-
ficity with both raw and normalized data). This advantage can
be explained on the basis of the different way in which the
classification task was carried out. As seen in Tables 1 and 2
and Figure 4, SIMCA was the technique that offered the best
results in the classification task, with percentages of speci-
ficity of 100.0% for VOO and OO classes vs. the OOO class.
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